
A Scalable and Robust Multi-Agent Approach to Distributed Optimization

Abstract

Modularizing a large optimization problem so that
the solutions to the subproblems provide a good
overall solution is a challenging problem. In this
paper we present a multi-agent approach to this
problem based on aligning the agent objectives
with the system objectives, obviating the need to
impose external mechanisms to achieve collabora-
tion among the agents. This approach naturally ad-
dresses scaling and robustness issues by ensuring
that the agents do not rely on the reliable operation
of other agents.
We test this approach in the difficult distributed op-
timization problem of imperfect device subset sele-
tion [Challet and Johnson, 2002]. In this problem,
there are n devices, each of which has a “distor-
tion”, and the task is to find the subset of those n
devices that minimizes the average distortion. Our
results show that in large systems (1000 agents) the
proposed approach provides improvements of over
an order of magnitude over both traditional opti-
mization methods and traditional multi-agent meth-
ods. Furthermore, the results show that even in ex-
treme cases of agent failures (i.e., half the agents
fail midway through the simulation) the system re-
mains coordinated and still outperforms a failure-
free and centralized optimization algorithm.

1 Introduction
Modularizing a large optimization problem so that the solu-
tions to the subproblems provide a good overall solution is
a challenging problem. Similarly, coordinating a large num-
ber of agents to achieve complex tasks collectively presents
new challenges to the field of multi-agent systems. In this
work we leverage recent advances in the field of multi-agent
coordination to modularize and solve a difficult optimization
problem.

In truly large problems, many of the reasonable assump-
tions used in multi-agent coordination problems related to a
handful of agents are difficult to justify. When dealing with a
small number of agents it is reasonable to assume that agents
react to one another, can model one another, and/or enter

into contracts with one another [Clement and Durfee, 1999;
Decker and Lesser, 1995; Hu and Wellman, 1998; Sandholm
and Lesser, 1997]. When dealing with thousands of agents
on the other hand, such assumptions become more difficult
to maintain. At best each one can assume that the agents are
aware of other agents as part of a background. In such cases,
agents have to act within an environment that may be shaped
by the actions of other agents, but cannot be interpreted as the
the by-product of the actions of any single agent.

In this work, we focus on an agent coordination method
that aims to handle large systems composed of simple agents
and where those agents are failure-prone. The size of the sys-
tem (e.g., a thousand agents) naturally requires methods that
do not rely on detailed information about the actions of all
the agents being available to a given agent. The simplicity
of the agents requires methods where the interactions among
the agents provides the systems’ strength rather than the so-
phistication of each individual agent. Finally, the propensity
of the agents to sudden failures requires solutions where one
agent’s actions are not rigidly dependent on the actions of
other agents.

The problem of imperfect device subset selection intro-
duced by Challet and Johnson [Challet and Johnson, 2002]
provides the perfect setting to test the efficacy of the multi-
agent method. In this problem, there are n objects, each
of which has a “distortion”. The task is to find the sub-
set of those n objects that minimizes the average distor-
tion. This is a hard optimization problem, and brute force
approaches cannot be used for any but its smallest toy in-
stances [Challet and Johnson, 2002; Garey and Johnson,
1979]. We propose to address this problem by associating
each device with a simple adaptive Reinforcement-Learning
(RL) agent [Kearns and Koller, 1999; Littman, 1994; Sut-
ton and Barto, 1998]) that decides whether or not its de-
vice will be a member of the subset. The essential prob-
lem is to determine how best to set the agent utility func-
tions (e.g., subsystem objective functions) in a way that will
lead to good values of the global utility (e.g., global objective,
in this case average distortion), without involving difficult
to scale external mechanisms to ensure cooperation among
the agents. This problem has been explored in many dif-
ferent domains, including multi agent systems, distributed
optimization, computational economics, mechanism design,
computational ecologies and game theory [Boutilier, 1996;



Sandholm and Lesser, 1997; Huberman and Hogg, 1988;
Parkes, 2001; Stone and Veloso, 2000]. (See [Tumer and
Wolpert, 2004] for a survey of the different approaches taken
in each field to this problem.)

This paper presents an agent coordination method well-
suited for large and noisy multi-agent systems, and is tested
on a difficult distributed optimization problem. In Section 2
we focus on the properties the agent utilities must possess
to lead to coordination. In Section 3 we present the imper-
fect device combination problem and derive the specific agent
utilities for this domain. In Section 4 we present results show-
ing that the proposed method outperforms traditional methods
by up to an order of magnitude, has superior scaling proper-
ties and is resistant to severe cases of agent failure. Finally, in
Section 5 we provide a summary and discuss the implications
and general applicability of this work.

2 Background

For the joint action of agents working in a large system to pro-
vide good values of the global utility, we must ensure that: (i)
the agents’ goals support the global goal; and (ii) each one
has a solvable problem. The first of these two desirable prop-
erties is that the agent utilities have to be aligned with the
global utility. For discrete states, this can be formalized by
assessing the “degree of factoredness” between any two util-
ities [Agogino and Tumer, 2004], which gives the fraction of
actions for an agent where the agent utility and global utility
have same delta (e.g., if agent utility goes up so does global
utility and vice versa).

The second properties assures that the agent utilities have
high “learnability” for the agent. Intuitively, learnability pro-
vides the sensitivity of an agent’s utility to its own actions.
It is computed by dividing the expected value of changes in
agent i’s utility caused changes in agent i’s actions to the ex-
pected value of changes in agent i’s utility caused by changes
in the actions of agents other than i [Wolpert and Tumer,
2001; Agogino and Tumer, 2004]. So at a given state, the
higher the learnability, the more the utility of agent i depends
on the move of agent i, i.e., the better the associated signal-
to-noise ratio for i. Higher learnability is desirable because it
makes it is easier for i to achieve a large values of its utility.

Typically these two requirements are in conflict with one
another. As a trivial example, a system in which all the agent
utility functions are set to the global utility is fully factored.
However, such a system will have low learnability since each
agent’s utility will depend on the actions of all the other
agents in the system. It will be nearly impossible for the
agents to determine the best actions to follow in most non-
trivial systems. At the other extreme, providing each agent
with a simple, local utility function will result in high learn-
ability for the agents’ utilities, but will not necessarily lead
the system to high values of global utility, unless the degree
of factoredness is also high. The challenge we faced then, is
to find agent utilities in a given domain, with the best trade-
off between these two requirements.

3 Combination of Imperfect Devices
We now present the difficult optimization problem of combin-
ing imperfect devices [Challet and Johnson, 2002]. A typical
example of this problem arises when many simple and noisy
observational devices (e.g., nano or micro devices, low power
sensing devices) attempt to accurately determine some value
pertinent to the phenomenon they’re observing. Each device
will provide a single number that is slightly off, similar to
sampling a Gaussian centered on the value of the real num-
ber. The problem is to choose the subset of a fixed collection
of such devices so that the average (over the members of the
subset) distortion is as close to zero as possible.

3.1 Problem Definition
Formally, the problem is to minimize

ε ≡
|∑N

j=1 n ja j|

∑N
k=1 nk

, (1)

where n j ∈ {0,1} is whether device j is or is not selected,
and there are N devices in the collection, having associ-
ated distortions {a j}. This is a hard optimization prob-
lem that is similar to known NP-complete problems such
as subset sum or partitioning [Challet and Johnson, 2002;
Garey and Johnson, 1979], but has two twists: the presence
of the denominator and that a j ∈ R ∀ j. In this work we set G
the system-level, global utility function to G =−ε (we do this
so that the goal is to “maximize” G, which is more consistent
with the concept of “utility” function). G is a function of the
full state system z (e.g., joint moves of all the agents).

The system is composed of N agents, each responsible for
setting one of the n j. Each of those agent has its own util-
ity function that it is trying to maximize, though the overall
objective is to maximize global performance. Our goal is to
devise agent utility functions that will cause the multi-agent
system to produce high values of G(z) [Agogino and Tumer,
2004; Wolpert and Tumer, 2001].

3.2 Expected Difference Utility
Now let us present the first of two utilities that possess the
desirable properties discussed in Section 2, the Estimated
Difference Utility (EDU). EDU aims to isolate the impact
of an agent on the full system by focusing on the difference
between the actual impact the agent has and its “expected”
impact. Let, Ezi [G(z)|z−i] provide the expected value of G
over the possible actions of agent i, where zi denotes the state
of agent i and z−i denotes the states of all agents other than i.
Then EDU for this application becomes:

EDUi(z) ≡ G(z)−Ezi [G(z)|z−i] (2)

= −
|∑N

j=1 n ja j|

∑N
k=1 nk

+

(

p(ni = 1)
|∑N

j 6=i n ja j +ai|

∑N
k 6=i nk +1

+ p(ni = 0)
|∑N

j 6=i n ja j|

∑N
k 6=i nk

)

(3)

where p(ni = 1) and p(ni = 0) give the probabilities that
agent i set its ni to 1 or 0 respectively. In what follows, we



will assume that those two actions are equally likely (i.e., for
all agents i, p(ni = 1) = p(ni = 0) = 0.5).

For each agent, EDU is fully factored with G because the
second term does not depend on agent i’s state [Wolpert and
Tumer, 2001] (these utilities are referred to as AU in [Wolpert
and Tumer, 2001]). Furthermore, because it removes noise
from an agent’s utility, EDU yields far better learnability than
does G [Wolpert and Tumer, 2001]. This noise reduction is
due to the subtraction which (to a first approximation) elimi-
nates the impact of states that are not affected by the actions
of agent i.

Depending on which action agent i chose (0 or 1), EDU
can be reduced to:

EDUi(z) = 0.5
|∑N

j=1 n ja j−ai|

∑N
k=1 nk−1

−0.5
|∑N

j=1 n ja j|

∑N
k=1 nk

if ni = 1 ,

or:

EDUi(z) = 0.5
|∑N

j=1 n ja j +ai|

∑N
k=1 nk +1

−0.5
|∑N

j=1 n ja j|

∑N
k=1 nk

if ni = 0 .

Note that in this formulation, EDU provides a very clear
signal. If EDU is positive, the action taken by agent i was
beneficial to G, and if EDU is negative, the action was detri-
mental to G. Thus an agent trying to maximize EDU will
efficiently maximize G, without explicitly trying to do so.
Furthermore, note that the computation of EDU requires very
little information. Any system capable of broadcasting G can
be minimally modified to accommodate EDU. For each agent
to compute its EDU, the system needs to broadcast the two
numbers needed to compute G: the number of devices that
were turned on (i.e., the denominator in Equation 1) and the
associated subset distortion as a real number (i.e., the numer-
ator in Equation 1 before the absolute value operation is per-
formed. Based on those two numbers, the agent can compute
its EDU .

3.3 Wonderful Life Utility
The second utility we present is the Wonderful Life Utility
(WLU) which aims to isolate the impact of an agent on the
full system by focusing on the difference between the impact
of the agent and its “disappearance” from the system [Wolpert
and Tumer, 2001]. WLU for this application becomes:

WLUi(z) ≡ G(z)−G(z−i)

= −
|∑N

j=1 n ja j|

∑N
k=1 nk

+
|∑N

j 6=i n ja j|

∑N
k 6=i nk

(4)

The major difference between EDU and WLU is in how
they handle the noise removing second term. EDU provides
an estimate of agent i’s impact by sampling all possible ac-
tions of agent i whereas WLU simply removes agent i from
the system. WLU is also factored with G, because the second
term does not depend on the actions of agent i (ie., both WLU
and G have the same derivative with respect to zi, the state of
agent i [Wolpert and Tumer, 2001]. Note however, that unlike
with EDU, the action chosen by agent i has a large impact on
the efficiency of WLU. If agent i chooses action 0, the two
terms in Equation 4 are identical, resulting in a WLU of zero.

Depending on which action agent i chose (0 or 1), WLU can
be reduced to:

WLUi(z) =
|∑N

j=1 n ja j−ai|

∑N
k=1 nk−1

−
|∑N

j=1 n ja j|

∑N
k=1 nk

if ni = 1 , (5)

or:

WLUi(z) = 0 if ni = 0 . (6)

In this formulation, unlike EDU, WLU provides a clear sig-
nal only if agent i had chosen action 1. In that case, a positive
WLU means that the action was beneficial to G, and a nega-
tive WLU means that the action was detrimental for G. How-
ever, if agent i had chosen action 0, it receives a reward of 0
regardless of whether that action was good or bad for G. This
means that on average half the actions an agent takes will be
random as far as G is concerned. Considering learnability im-
plications, this means that on average W LU will have half the
learnability of EDU for this problem.

4 Experimental Results
In this work we purposefully used computationally unsophis-
ticated and easy to build agents for the following reasons:

1. To ensure that we remained consistent with our pur-
pose of showing that a large scale system of potentially
failure-prone agents can be coordinated to achieve a
global goal. Indeed, building thousands of sophisticated
agents may be prohibitively difficult; therefore though
systems that will scale up to thousands may use sophis-
ticated agents, they cannot rely on such sophistication.

2. To focus on the design of the utility functions. Having
sophisticated agents can obscure the differences in per-
formance due to the agent utility functions and the algo-
rithms they ran. By having each agent run a very simple
algorithm we kept the emphasis on the effectiveness of
the utility functions.

Each agent had a data set and a simple reinforce-
ment learning algorithm. Each agents’ data set contained
{time,action,utility value} triplets that the agent stored
throughout the simulation. At each time step each agent chose
what action to take, which provided a joint action which in
turn set the system state. Based on that state the global util-
ity, and the agent utility for all agents were computed. The
new {time,action,utility value} for agent i is then added to
the data set maintained by agent i. This is done for all agents
and then the process repeats.

To choose its actions, an agent uses its data set to estimate
the values of the utility it would receive for taking each of
its two possible move. Each agent i picks its action at a time
step based on the utility estimates it has for each possible ac-
tion. Instead of simply picking the largest estimate, to pro-
mote exploration it probabilistically selects an action, with
a higher likelihood of selecting the actions with higher util-
ity estimates, e.g., it uses a Boltzmann distribution across the
utility values [Sutton and Barto, 1998]. Because the experi-
ments were run for short periods of time, the temperature in
the Boltzmann distribution did not decay in time. Finally, to
form the agents’ initial data sets, there is an initialization pe-
riod in which all actions by all agents are chosen uniformly



randomly, with no learning used. It is after this initialization
period ends that the agents choose their actions according to
the associated Boltzmann distributions.

For all learning algorithms, the first 20 time steps consti-
tute the data set initialization period (note that all learning
algorithms must “perform” the same during that period, since
none are actually in use then). Starting at t = 20, with each
consecutive time step a fixed fraction of the agents switch
to using their learner algorithms instead, while others con-
tinue to take random actions. Because the behavior of the
agents starting to use their learning algorithm changes, hav-
ing all agents start learning simultaneously provides a sudden
“spike” into the system which significantly slows down the
learning process. This gradual introduction of the learning
algorithms is intended to soften the “discontinuity” in each
agent’s environment. In these experiments, for N = 50 and
N = 100, three agents turned on their learning algorithms at
each time step, and for N = 1000, sixty agents turned on their
learning algorithms at each time step.

4.1 Agent Utility Performance
Figures 1-2 show the convergence properties of different
agent utilities and a search algorithm in systems with 100
and 1000 agents respectively. The results reported are based
on 20 different {ai} configurations, where each {ai} is se-
lected from a Gaussian distribution with zero mean and unit
variance. For each configuration, the experiments were run
50 times (i.e., each point in the graphs is the average of
20× 50 = 1000 runs). In all cases, the Boltzmann parame-
ter (e.g., temperature τ) was set to 0.1. The graphs labeled G,
EDU and WLU show the performance of agents using rein-
forcement learners with those reinforcement signals provided
by G, EDU and WLU respectively. S shows the performance
of local search where new ni’s are generated at each step by
perturbing the current state and selected if the solution is bet-
ter than the current best solution (in the experiments reported
here, 25% of the actions were randomly changed at each time
step, though somewhat surprisingly, the results are not partic-
ularly sensitive to this parameter). Because the runs are only
200 time steps long, algorithms such as simulated annealing
do not outperform local search: there is simply no time for an
annealing schedule. This local search algorithm provides the
performance of an algorithm with centralized control.

In both cases in which agents use the G utility, they have
a difficult time learning. The noise in the system is too large
for such agents to learn how to select their actions. For 100
agents (Figure 1), WLU performs at the level of the central-
ized algorithm. Because agents only receive useful feedback
when they take one of the two actions, the noise in the sys-
tem is larger than that for EDU. This “noise” becomes too
much for systems with 1000 agents (Figure 2), where WLU
is outperformed by the centralized algorithm. EDU, on the
other hand, continues to provide a clean signal for all systems
up to the largest we tested (1000 agents). Note that because
agents turning on their learning algorithm changes the envi-
ronment, the performance of the system as whole degrades
immediately after learning starts (i.e., after 20 steps) in some
cases. Once agents adjust to the new environment, the system
settles down and starts to converge.

0.001

0.01

0.1

0 50 100 150 200

-G

time

EDU
WLU

G
S

Figure 1: Performance of the three utility functions for
N=100.

1e-05

0.0001

0.001

0.01

0.1

0 50 100 150 200

-G

time

EDU
WLU

G
S

Figure 2: Performance of the three utility functions for
N=1000.

4.2 Scaling Characteristics of Utilities

Figure 3 shows scaling results (the t = 200 average perfor-
mance over 1000 runs) along with the associated error bars
(differences in the mean). As N grows two competing factors
come into play. On the one hand, there are more degrees of
freedom to use to minimize G. On the other hand, the prob-
lem becomes more difficult: the search space gets larger for
S, and there is more noise in the system for the learning algo-
rithms. To account for these effects and calibrate the perfor-
mance values as N varies, we also provide the baseline per-
formance of the “algorithm” that randomly selects its action
(“Ran”). Note that the difference between the performances
of all algorithms and EDU increases when the system size
increases, reaching a factor of twenty for S and over 600 for
G for N = 1000.

Also note that all algorithms but EDU have slopes simi-
lar to that of “Ran”, showing that they cannot use the addi-
tional degrees of freedom provided by the larger N. Only



1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000

-G

Number of Agents

TDU
WLU

G
S

Ran

Figure 3: Scaling performance of the three utility functions.

EDU effectively uses the new degrees of freedom, providing
gains that are proportionally higher than the other algorithms
(i.e., the rate at which EDU’s performance improves outpaces
what is “expected” based on the Ran’s performance).

4.3 Robustness

In order to evaluate the robustness of the proposed utility
functions for multiagent coordination, we tested the perfor-
mance of the system when a subset of the agents failed dur-
ing the simulation. At a given time (t = 100 in these ex-
periments), a certain percentage of agents failed (e.g., were
turned off) simulating hazardous condition in which the func-
tioning of the agents cannot be ascertained. The relevance of
this experiment is in determining whether the proposed utility
functions require all or a large portion of the agents to per-
form well to be effective, or whether they can handle sudden
changes to their environment.

Figure 4 shows the performance of EDU, WLU, and G for
100 agents when 20% of the agents fail at time step t = 100.
The results of the centralized search algorithm with no fail-
ures (“S” from Section 4.1), is also included for comparison.
In these experiments, none of the agent learning algorithms
were adjusted to account for the change in the environment.
In agents that continued to function, the learning proceeded
as though nothing had happened. As a consequence, not only
did the agents need to overcome the sudden change in their
task but they had to do so with parameters tuned to the pre-
vious environment. Despite these limitations, EDU recovers
rapidly for the 100 agent case, whereas G and WLU do not.
Note this is a powerful results: a distributed algorithm with
only 80% functioning agents tuned to a different environment
outperforms a 100% functioning centralized algorithm.

Figure 5 show the performance of EDU when the per-
centage of agent failures increases from 10 to 50% for 100
agents. For comparison purposes, the search results (from
Section 4.1) are also included. After the initial drop in per-
formance when the agents stop responding, EDU trained al-
gorithms recover rapidly and even with half the agents outper-
form the fully functioning and centralized search algorithm.

0.001

0.01

0.1

0 50 100 150 200

-G

time

EDU
WLU

G
S

Figure 4: Performance of the three utilities for 100 agents,
20% of which fail at time t=100 (S has no failures).

0.001

0.01

0.1

0 50 100 150 200

-G

time

10%
20%
50%

S

Figure 5: Effect of agent failures on EDU for 100 agents (S
has no failures).

These results demonstrate both the adaptability of the EDU
and its robustness to failures of individual agents, even in ex-
treme cases.

5 Discussion
The combination of imperfect devices is a simple abstraction
of a problem that will loom large in the near future: How
to coordinate a very large numbers of agents – with limited
sophistication and failure prone – to achieve a prespecified
global objective. This problem is fundamentally different
from traditional multi-agent coordination (and distributed op-
timization) problems in at least three ways: (i) the agents are
simple and do not model the actions of other agents; (ii) the
agents are unreliable and failure-prone; and (iii) the number
of agents is in the thousands.

The work summarized in this paper is based on ensuring
coordination while eliminating external mechanisms such as
contracts and incentives to allow the systems to scale. In the



experimental domain of selecting a subset of imperfect de-
vices, the results show the promise of this method by provid-
ing performance improvements of twenty fold over a central-
ized algorithm and of nearly three orders of magnitude over a
multi-agent system using the global utility (G) directly. Fur-
thermore, when as many as half the agents fail during simula-
tions, the proposed method still outperforms a fully function-
ing centralized search algorithm.

This approach is well-suited for addressing coordination in
large scale cooperative multi-agent systems where the agents
do not have pre-set and possibly conflicting goals, or when
the agents do not need to hide their objectives. The focus is
on ensuring that the agents do not inadvertently frustrating
one another in achieving their goals. The results show that in
such large scale, failure-prone systems, this method performs
well precisely because it does not rely on the agents building
an accurate model of their surroundings, modeling the actions
of other agents or requiring all agents in the system to reach
a minimum performance level.

References
[Agogino and Tumer, 2004] A. Agogino and K. Tumer. Uni-

fying temporal and structural credit assignment problems.
In Proc. of the Third Intl Jt. Conf. on Autonomous Agents
and Multi-Agent Systems, New York, NY, July 2004.

[Arai et al., 2000] S. Arai, K. Sycara, and T. Payne. Multi-
agent reinforcement learning for planning and scheduling
multiple goals. In Proc. of the Fourth Intl Conference on
MultiAgent Systems, pages 359–360, July 2000.

[Boutilier, 1996] C. Boutilier. Planning, learning and coordi-
nation in multiagent decision processes. In Proceedings of
the Sixth Conference on Theoretical Aspects of Rationality
and Knowledge, Holland, 1996.

[Challet and Johnson, 2002] D. Challet and N. F. Johnson.
Optimal combinations of imperfect objects. Physical Re-
view Letters, 89:028701, 2002.

[Clement and Durfee, 1999] B. Clement and E. Durfee. The-
ory for coordinating concurrent hierarchical planning
agents. In Proceedings of the National Conference on Ar-
tificial Intelligence, pages 495–502, 1999.

[Decker and Lesser, 1995] K. Decker and V. Lesser. Design-
ing a family of coordination mechanisms. In Proceedings
of the International Conference on Multi-Agent Systems,
pages 73–80, June 1995.

[Fredslund and Mataric, 2002] J. Fredslund and M. J.
Mataric. Robots in formation using local information. In
Proc., 7th Intl Conf. on Intelligent Autonomous Systems,
pages 100–107, Marina del Rey, CA, March 2002.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.
Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San
Fransisco, 1979.

[Hogg and Huberman, 1998] T. Hogg and B. A. Huberman.
Controlling smart matter. Smart Materials and Structures,
7:R1–R14, 1998.

[Hu and Wellman, 1998] J. Hu and M. P. Wellman. Multi-
agent reinforcement learning: Theoretical framework and
an algorithm. In Proc. of the Fifteenth Intl Conference on
Machine Learning, pages 242–250, June 1998.

[Huberman and Hogg, 1988] B. A. Huberman and T. Hogg.
The behavior of computational ecologies. In The Ecology
of Computation, pages 77–115. North-Holland, 1988.

[Kearns and Koller, 1999] M. Kearns and D. Koller. Efficient
reinforcement learning in factored MDPs. In Proceedings
of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, pages 740–747, 1999.

[Kraus, 1997] S. Kraus. Negotiation and cooperation in
multi-agent environments. Artificial Intelligence, pages
79–97, 1997.

[Littman, 1994] M. L. Littman. Markov games as a frame-
work for multi-agent reinforcement learning. In Proceed-
ings of the 11th International Conference on Machine
Learning, pages 157–163, 1994.

[Parkes, 2001] D. C. Parkes. Iterative Combinatorial Auc-
tions: Theory and Practice. PhD thesis, University of
Pennsylvania, 2001.

[Pynadath and Tambe, 2002] D. Pynadath and M. Tambe.
The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of Ar-
tificial Intelligence Research, 16:389–423, 2002.

[Sandholm and Lesser, 1997] T. Sandholm and V. R. Lesser.
Coalitions among computationally bounded agents. Artifi-
cial Intelligence, 94:99–137, 1997.

[Scerri et al., 2004] P. Scerri, Y. Xu, E. Liao, J. Lai, and
K. Sycara. Scaling teamwork to very large teams. In Proc.
of the Third Intl Joint Conference on Autonomous Agents
and Multi-Agent Systems, New York, NY, July 2004.

[Sen et al., 1994] Sandip Sen, Mahendra Sekaran, and John
Hale. Learning to coordinate without sharing information.
In Proceedings of the Twelfth National Conference on Ar-
tificial Intelligence, pages 426–431, Seattle, WA, 1994.

[Stone and Veloso, 2000] P. Stone and M. Veloso. Multia-
gent systems: A survey from a machine learning perspec-
tive. Autonomous Robots, 8(3), 2000.

[Stone, 2000] P. Stone. Layered Learning in Multi-Agent
Systems: A Winning Approach to Robotic Soccer. MIT
Press, Cambridge, MA, 2000.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Jour-
nal of Artificial Intelligence Research, 7:83–124, 1997.

[Tumer and Wolpert, 2004] K. Tumer and D. Wolpert, edi-
tors. Collectives and the Design of Complex Systems.
Springer, New York, 2004.

[Wolpert and Tumer, 2001] D. H. Wolpert and K. Tumer.
Optimal payoff functions for members of collectives. Ad-
vances in Complex Systems, 4(2/3):265–279, 2001.


